

IMPACT OF CO2 EMISSION TAXATION AND FUELS TYPE ON ARCTIC SHIPPING

OLIVIER FAURY PH.D.

TALLINN TECHNOLOGY – MAY 2025

2 WHO AM I?

- Olivier Faury
- 15 years of practionner experience (France and Morocco)
- Masters in Transport Logistic and International Trade (2011) Kedge BS
- Ph.D Attractiveness of the NSR (2016) Kedge BS
- Associate professor at EM Normandie since Sept 2016

3 TODAY'S WORSHOP

Presentation of my research

Group work

4 AIM OF THE WORKSHOP

- Work in groups in order to:
 - Define a topic that you could tackle
 - Define a journal you could target
 - What kind of data would you need and is it easy access?
 - What would be your contribution?
 - What would be your main research question?
 - What would be the managerial implication of your research?

5 EVOLUTION OF PUBLICATION DEALING WITH ARCTIC AND SUSTAINABILITY

6 SOME BASICS

- To maintain the global climate heat below +2°C, 85% of the GHG emitted in 2010 have to be reduced by 2100 (Bouman et al, 2017)
- The use of HFO is banned fom the Arctic
- Size of vessel dedicated to Arctic navigation is different from vessels sailing on SCR.
- The Arctic is not a ECA area
- No transshipment within the NSR (containers)
- Changing transit time

7 EXISTING MEASURES TO MITIGATE CO₂ EMISSIONS

Hull design

Economy of scale

Power and propulsion (including energy saving devices)

Speed*

Fuels and alternative energy sources*

Weather routing and scheduling*

Source: Bouman et al (2017)

8 TYPOLOGY OF VESSELS WITHIN ARCTIC OCEAN

	Classification	Description	Examples of Ship Types
-	Government vessels and icebreakers	 Designed to move and navigate in ice-covered waters Must have a strengthened hull, an ice-clearing shape, and the power to push through ice 	 Coastguard Icebreakers (private, research, government)
	Container ships	Cargo ships that carry their load in truck-size containers	Cargo transport
	General cargo	Carry various types and forms of cargo	 Community resupply Roll-on/roll-off cargo
	Bulk carriers	 Bulk carriage of ore (can carry either oil or loose or dry cargo, but not simultaneously) 	 Timber Oil, ore Automobile carriers
	Tanker ships	Bulk carriage of liquids or compressed gas	Oil, natural gas, chemical tankers
	Passenger ships	Carry passengers for remuneration	 Cruise ships Ocean liners
	Pleasure craft	Recreational vessels that do not carry passengers for remuneration	 Ferries Motor yachts Sail boats Row boats
	Tugs/Barges	 Tug: Designed for towing or pushing and general work duties Barge: Non-propelled vessel for carriage of bulk or mixed cargo 	Resupply vesselsBulk cargo transport
	Fishing vessels	 Fishing boats used in commercial fishing activities Generally small vessels, between 30 and 100 m 	 Small fishing boats Trawlers Whaling boats Fish-processing boats
	Oil- and gas-exploration vessels	 Designed specifically for the exploration and extraction of natural gas and oil 	 Seismic, oceanic, and hydrographic survey vessels
Source: Huntingto	on et al (2023)		Oil drilling/storage vessels Offshore resupply

9 EVOLUTION OF KEY PARAMETERS

- 2012/2013 beginning of academic research about Arctic
 - NSR Versus SCR (Farré et al, 2014; Cariou and Faury, 2015)
 - Economic models (Farré et al, 2014; Liu and Kronbak, 2010; Furuichi and Otsuka, 2014)
 - Focus on
 - Container (Lasserre, 2014)
 - Bulk (Schoyen and Brathen, 2011)
 - Steady speed (Verny and Grigentin, 2009, Cariou and Faury, 2015)
- 2024
 - Economic models (Theocharis et al, 2019)
 - NSR appears more as a complementary shipping lane (Hermann et al, 2022)
 - Speed variation (Cheaitou et al,; Faury and Cariou, 2016)
 - Ecological impact (Cariou and Faury, 2016)

MAIN JOURNALS TO TARGET

Journal of Transport Geography	Transportation Research Part A: Policy and Practice	Transportation Research Part D: Environment and Transport	Transportation Research Part E: Logistics and Transportation Review	Maritime Policy & Management	Maritime Economics & Logistics
European Journal of Operational Research	International Journal or Production Economics	The Asian Journal of Shipping and Logistics	International Journal of e-Navigation and Maritime Economy	International Journal of Geographical Information Science	4Journal of Maritime Research
Transport Policy	Polar Record	Journal of Navigation	International Challenges	Journal of Ocean Technology	Applied Mechanics and Materials
Advanced Science Letters	Transportation Research Board	Ambio	Climatic Change	Izvestiya, Atmospheric and Oceanic Physics	Journal of Nuclear Science and Technology

Source: Theocharis et al (2018)

12 MAIN PARAMETER WHEN DEALING WITH ARCTIC NAVIGATION

CAPEX (Lasserre, 2014)

• Anticipation of ice conditions = adapted speed

ECONOMIC

OPEX (Erikstad and Ehlers, 2012)

- Additional cost
- The question of insurance (disagreement)

Voyage cost

- Fuel cost (ban of HFO)
- IB fees

CO₂ taxation (Cariou and Faury, 2015)

- Impact the cost of transportation
- Incrase the attractiveness of the NSR (Cariou and Faury, 2015)

14 SCC IMPACT ON TRANSPORTATION (NO SCC)

Figure 3d: Profit and Loss generated with HFO in median access scenario with SCC

15 SCC IMPACT ON TRANSPORTATION (SCC)

17 LEGAL

- Polar Code
- POLARIS
- ECA

8 POLAR CODE

Introduction

- Type of vessels (A, B, C)
- Different hazards

Part I:

 Technical part of the vessel

Part II:

 Environmental behavior

19 TECHNOLOGICAL PARAMETER

- Sailing in ice implies to use dedicated vessels:
 - Ice class
 - Polar class
- Yet, if the length of navigation increase, so is the:
 - Fuel consumption
 - CAPEX
- Thus, the loading capacity may decrease due to additional cost

		Ice free	New ice	Grey ice	Grey White ice	Thin First Year 1st Stage	Thin First Year 2nd Stage	Medium first year	Thick first year	Second year	Multi year	Heavy Multi-year
	PC1	3	3	3	3	2	2	2	2	2	1	1
S	PC2	3	3	3	3	2	2	2	2	1	1	0
Class	PC3	3	3	3	3	2	2	2	2	1	0	-1
ar C	PC4	3	3	3	3	2	2	2	1	0	-1	-2
Polar	PC5	3	3	3	3	2	2	1	1	-1	-2	-3
	PC6	3	2	2	2	2	1	1	0	-2	-3	-3
	PC7	3	2	2	2	1	1	0	-1	-3	-3	-4
S	1AS	3	2	2	2	2	1	0	-2	-3	-4	-5
Class	1A	3	2	2	2	1	0	-1	-3	-4	-5	-6
lce (1B	3	2	2	1	0	-1	-2	-4	-5	-6	-7
	1C	3	2	1	0	-1	-2	-3	-5	-6	-7	-8
Catregory II	Not Ice Class	3	1	0	-1	-2	-3	-4	-6	-7	-8	-8

POLARIS RISK INDEX OUTCOME

Transit time (25%): No possible path

Transit time (50%): 1 week, 2 days, 12 hours, 33 minutes Transit time (75%): 1 week, 8 hours, 6 minutes, 33 seconds

24 SPEED OF THE VESSEL BASED ON ICE THICKNESS

SPEED OF THE VESSEL BASED ON POLARIS

TRANSIT TIME VARIATION

COST OF FUEL BY LOGISTICAL ORGANISATION AND ICE CONDITIONS

28

29 WHERE IS THE GAP?

	NEP	NSR	NWP
Cruise		2	
Hinterland		2	
Maritime	I	30	
Port		13	
Shipping Tourism	I	58	7
Tourism		I	
Transport		26	

Source: Based on Lavissiere et al (2020)

NEXT STEP

- IA
- Optimization
- Integration of new technologies
- Autonomous vessels
- LNG, MGO, bio-fuel...
- Cruise navigation

ARCTIC AND BALTIC

